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The problem of competitive nucleation in the framework of probabilistic cellular automata is studied from
the dynamical point of view. The dependence of the metastability scenario on the self-interaction is discussed.
An intermediate metastable phase, made of two flip-flopping chessboard configurations, shows up depending
on the ratio between the magnetic field and the self-interaction. A behavior similar to the one of the stochastic
Blume-Capel model with Glauber dynamics is found.
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Metastable states are common in nature; they show up in
connection with first-order phase transitions. Well-known ex-
amples are supercooled and superheated liquids. Their statis-
tical mechanics description revealed to be a challenging task.
An approach based on equilibrium states has been developed
via analytic continuation techniques �1� and via the introduc-
tion of equilibrium systems on suitably restricted sets of con-
figurations �2–4�. The purely dynamical point of view, dating
back to Ref. �5�, has been developed via the pathwise tech-
nique �6� and the potential theoretical approach �7�.

We shall stick to the dynamical description to investigate
competing metastable states. This situation arises in many
physical processes, such as the crystallization of proteins
�8,9� and their approach to equilibrium �10�. The extreme
situation is represented by glasses, in which the presence of a
huge number of minima of the energy landscape prevents the
system from reaching equilibrium �11�. The study of these
systems is difficult, since the minima of the energy and the
decay pathways between them change when the control pa-
rameters are varied. It is then of interest the study of models
in which a complete control of the variations induced on the
energy landscape by changes in the parameters is possible.

In this perspective, the analysis of the Blume-Capel
model in Refs. �12,13� and that of the Potts model in Ref.
�14� are of great interest. In the Blume-Capel model the sites
of the lattice can be either empty or occupied by a 1 /2-spin
particle. The interaction favors the presence of neighboring
aligned spins; the chemical potential � controls the tendency
to have particles or lacunas on the lattice and the magnetic
field h, depending on its sign, favors either the pluses or the
minuses. Depending on the parameters, in the zero tempera-
ture limit the stable state is the one with all the spins up �u�
or all the spins down �d� or no particle at all �0�. Let h ,�
�0, so that the unique stable state is u, and set a=h /�. For
a�1 the transition from the metastable state d to u is
achieved via a sequence of increasing plus square droplets in
the sea of minuses. For 1�a�2 and h small, the transition
from d to u is realized via increasing squared frames in
which the internal pluses are separated by the external mi-
nuses by a large one zero frame. For a�2 and h small, the
system started at d visits the state 0 before reaching u; the
transition from d to 0 is achieved via increasing zero square

droplets in the sea of minuses, while the transition from 0 to
u is realized via increasing plus square droplets in the sea of
zeros.

We study, here, metastability for a probabilistic cellular
automaton �15� with self-interaction �, focusing on the de-
pendence of the metastability scenario on such a parameter.
The model interpolates those studied in Ref. �16� ��=0� and
�17,18� ��=1�. For �=0 each spin interacts only with its
nearest neighbors; for �=1 the self-interaction has the same
strength as the nearest-neighbor coupling. In the absence of
self-interaction an intermediate metastable state shows up; it
is proven that the intermediate state is visited during the
transition from the metastable to the stable state. The role
played by the intermediate state changes as the self-
interaction � is varied. Quite surprisingly, results similar to
those found in Ref. �12� for the Blume-Capel model are ob-
tained.

Consider the two-dimensional torus �= �0, . . . ,L−1�2,
with L even, endowed with the Euclidean metric; x ,y�� are
nearest neighbors if and only if their mutual distance is equal
to 1. Associate a variable ��x�= �1 with each site x�� and
let S= �−1, +1�� be the configuration space. Let 	�0 and
� ,h� �0,1�. Consider the Markov chain �n, with n
=0,1 , . . ., on S with transition matrix

p��,
� = �
x��

px,�„
�x�… ∀ �,
 � S , �1�

where, for x�� and ��S, px,��·� is the probability measure
on �−1, +1� defined as px,��s�=1 / (1+exp�−2	s�S��x�+h��)
with s� �−1, +1� and S��x�=�y��K�x−y���y� where
K�x−y� is 0 if 	x−y	�2, 1 if 	x−y	=1, and � if 	x−y	=0.
The probability px,��s� for the spin ��x� to be equal to s
depends only on the values of the spins of � in the five-site
cross centered at x. The metastable behavior of model �1� has
been studied in Ref. �16� for �=0 and in Refs. �17,18� for
�=1.

The Markov chain �1� is probabilistic cellular automata;
the chain �n, with n=0,1 , . . ., updates all the spins simulta-
neously and independently at any time. The chain is revers-
ible, see Ref. �15�, with respect to the Gibbs measure ����
=exp�−	H���� /Z with Z=�
�S exp�−	H�
�� and
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H��� = − h �
x��

��x� −
1

	
�
x��

ln cosh�	�S��x� + h�� �2�

that is detailed balance p�� ,
�e−	H���= p�
 ,��e−	H�
� holds
for � ,
�S; hence, � is stationary. We refer to 1 /	 as to the
temperature and to h as to the magnetic field; the interaction
is short range and it is possible to extract the potentials as
described in Ref. �18�.

Although the dynamics is reversible with respect to the
Gibbs measure associated to the Hamiltonian �2�, the prob-
ability p�� ,
� cannot be expressed in terms of H���−H�
�,
as usually happens for Glauber dynamics. Given � ,
�S,
we define the energy cost


��,
� = − lim
	→�

ln p��,
�
	

= �
x��:


�x��S��x�+h��0

2	S��x� + h	 .

�3�

Note that 
�� ,
��0 and 
�� ,
� is not necessarily equal to

�
 ,��; it can be proven, see �17�, Sec. 2.6, that

e−	
��,
�−	��	� � p��,
� � e−	
��,
�+	��	� �4�

with ��	�→0 in the zero temperature limit 	→�. Hence, 

can be interpreted as the cost of the transition from � to 

and plays the role that, in the context of Glauber dynamics, is
played by the difference of energy.

To pose the problem of metastability it is necessary to
understand the structure of the ground states; since the
Hamiltonian depends on 	, their definition deserves some
thinking. The ground states are those configurations on
which the Gibbs measure � concentrates when 	→�;
hence, they can be defined as the minima of the energy

E��� = lim
	→�

H��� = − h �
x��

��x� − �
x��

	S��x� + h	 . �5�

For T�S, we set E�X�=min��X E���. For h�0 the configu-
ration u, with u�x�= +1 for x��, is the unique ground state;
indeed each site contributes to the energy with −h− �4+�
+h�. For h=0, the ground states are the configurations such
that all the sites contribute to the sum �5� with 4+�. Hence,
for �� �0,1�, the sole ground states are the configurations u
and d, with d�x�=−1 for x��. For �=0, the configurations
ce ,co�S such that ce�x�= �−1�x1+x2 and co�x�= �−1�x1+x2+1 for
x= �x1 ,x2��� are ground states, as well. Notice that ce and
co are chessboardlike states with the pluses on the even and
odd sublattices, respectively; we set c= �ce ,co�. Since the
side length L of the torus � is even, then E�ce�=E�co�
=E�c�.

We study those energies as a function of � and h, recalling
that periodic boundary conditions are considered. We have
E�u�=−L2�4+�+2h�, E�d�=−L2�4+�−2h�, and E�c�=
−L2�4−��; hence E�c��E�d��E�u� for 0�h���1, E�c�
=E�d��E�u� for 0�h=��1, and E�d��E�c��E�u� for
0���h�1.

We can now pose the problem of metastability at finite
volume and temperature tending to zero �Friedlin-Wentzel

regime�. Following Ref. �6�, see also the Appendix of Ref.
�17�, given a sequence of configurations �=�1 , . . . ,�n, with
n�2, we define the energy height along the path � as ��

=maxi=1,. . .,	�	−1�E��i�+
��i ,�i+1��. Note that the definition
does not depend on the direction in which the path � is
followed. More precisely, denoted by �� the path
�n ,�n−1 , . . . ,�1, since

E��� + 
��,
� = E�
� + 
�
,�� �6�

for any � ,
�S, it follows that ��=���; �6� is a conse-
quence of the detailed balance principle. Given A ,A��S, we
let the communication energy between A and A� be the mini-
mal energy height �� over the set of paths � starting in A
and ending in A�. For any ��S, we let I��S be the set of
configurations with energy strictly below E��� and V�

=��� ,I��−E��� be the stability level of �, that is, the en-
ergy barrier that, starting from �, must be overcome to reach
the set of configurations with energy smaller than E���; we
set V�=� if I�=�. We denote by Ss the set of global
minima of the energy �5�, namely, the collection of the
ground states, and suppose that the communication energy
�=max��S/SsV� is strictly positive. Finally, we define the set
of metastable states Sm= �
�S :V
=��. The set Sm deserves
its name, since it proves the following �see, e.g., Ref. �17�,
Theorem A.2�: Pick ��Sm, consider the chain �n started at
�0=�, then the first hitting time �Ss =inf�t�0:�t�Ss� to the
ground states is a random variable with mean exponentially
large in 	, that is,

lim
	→�

1

	
ln E���Ss� = � �7�

with E� the average on the trajectories started at �.
In this regime the description of metastability is reduced

to the computation of Ss, �, and Sm. We choose the param-
eters of the model �1� in such a way that 0�h�1, h��, and
2 /h, 2 / �h−��, 2 / �h+��, and �2+�−h� /h are not integers.
The configuration u is then the unique ground state, i.e., Ss

= �u�. Two candidates for metastability are d and c; to find
Sm, one should compute � and prove that either Vd or Vc is
equal to �. This is a difficult task, indeed all the paths �
connecting d and c to u must be taken into account and the
related energy heights �� computed. Since at each time step
all the spins of the lattice can be updated, the structure of the
trajectories is highly complicated. This is why the study of
the energy landscape of probabilistic cellular automata is
very difficult �17�, Theorem 2.3; such a task is simpler for
serial Glauber dynamics, where a general approach can be
developed �6�, Sec. 7.6.

We develop a heuristic argument to compute �. Recall �3�
and note that � and h have been chosen so that S��x�+h
�0. Thus, it follows that, given ��S, there exists a unique

�S such that 
�� ,
�=0; the configuration 
 is such that

�x��S��x�+h��0 for all x�� and is the unique configura-
tion to which the system can jump, starting from �, with
probability tending to one in the limit 	→� �see �4��. We
say that ��S is a local minimum of the energy if and only
if 
�� ,��=0; starting from a local minimum, transitions to
different configurations have strictly positive energy cost and
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thus happen with negligible probability in the zero tempera-
ture limit. It is immediate that d and u are local minima of
the energy, while ce and co are not; indeed ce�x��Sce�x�+h�
�0 and co�x��Sco�x�+h��0 for all x��. We also have that

�ce ,co�=
�co ,ce�=0; hence, at very low temperature, the
system started in co is trapped in a continuous flip-flop be-
tween co and ce. A peculiarity of parallel dynamics is the
existence of pairs � ,
�S in which the chain is trapped
since 
�� ,
�=
�
 ,��=0; the probability to exit such a pair
is exponentially small in 	.

We characterize, now, the local minima and the trapping
pairs. For what concerns the local minima, we consider a
configuration � and study the sign of S��x�+h. Suppose,
first, h�� and recall ��1; the sign of S��x�+h equals the
sign of the majority of the spins in the five-site cross cen-
tered at x. Hence, � is a local minimum if and only if for
each site x there exist at least two nearest neighbors such that
the associated spins are equal to ��x�. Suppose, now, h��
�0; the sign of S��x�+h is negative if and only if at least
three among the spins associated to neighboring sites of x are
minus. Hence, � is a local minimum if and only if for each
site x such that ��x�=−1 there exist at least three negative
minus neighbors and for each site x such that ��x�= +1 there
exist at least two positive neighbors. In conclusion, for h
�� the local minima of the energy are those configurations
in which all the pluses, if any, are precisely those associated
with the sites inside a rectangle �plus-minus droplets�. For
h�� the local minima are all the configurations that can be
drawn adding pluses to d so that each plus �minus� has at
least �at most� two neighboring pluses. Plus-minus rectangu-
lar droplets are local minima also in this case. For what
concerns the trapping pairs, consider a configuration � with a
rectangle of chessboard plunged in the sea of minuses
�chessboard-minus droplet� and let 
 be the configuration
obtained flipping all the spins associated with sites in the
chessboard rectangle. The configuration � ,
 form a trapping
pair only for h��. Indeed, it is immediate to show that all
the spins of the chessboard tend to flip, some thinking is
necessary only for the minus corners. Let x be the corner site
with ��x�=−1, since S��x�+h=−�+h, we have that S��x�
+h�0 for h�� and S��x�+h�0 for h��. Thus, the spin
tends to flip in the former case and not in the latter.

The local minima and the trapping pairs can be used to
construct the optimal paths connecting d and c to the ground
state u. We distinguish two cases.

Case h���0. Although ce and co are not local minima
of the energy, the system started in c is trapped in a continu-
ous flip-flop between co and ce. This trapping persists even if
a rectangle of pluses is inserted in the chessboard back-
ground �plus-chessboard droplet�; a path from c to u can be
constructed with a sequence of such droplets. The difference
of energy between two plus-chessboard droplets with side
lengths, respectively, given by � ,m�2 and � ,m+1 is equal
to 4−2��+h��. It then follows that the energy of a such a
droplet is increased by adding an �-long slice if and only if
�� �2 / ��+h��+1=�c

u ��x� denotes the largest integer smaller
than the real x�. The length �c

u is called the critical length.

It is reasonable that the energy barrier Vc is given by the
difference of energy between the smallest supercritical plus-
chessboard droplet, i.e., the plus-chessboard square droplet
with side length �c

u, and the configuration c; by using �5� we
get that such a difference of energy is equal �19� to �c

u

=8 / ��+h�.
A path from d to u can be constructed with a sequence of

plus-minus droplets. By using �5� we get that the difference
of energy between two plus-minus droplets with side lengths,
respectively, given by � ,m�2 and � ,m+1 is 4�2−h��. It
then follows that the energy of a plus-minus droplet is in-
creased by adding an �-long slice if and only if �� �2 /h�
+1=�d

u. The length �d
u is the critical length for the plus-

minus droplets; by using �5� we get that the difference of
energy between the smallest supercritical plus-minus droplet
and d is equal to �d

u=16 /h.
An alternative path from d to u can be constructed via a

sequence of frames with the internal rectangle of pluses
separated by the external minuses by a large one chessboard
stripe. These are peculiar trapping pairs in which the flip-
flopping spins are those associated with the sites in the stripe
of chessboard. We can prove that the difference of energy
between two frames with internal �rectangle of pluses� side
lengths, respectively, given by � ,m�2 and � ,m+1 is equal
to 8−4�h−��−4h�, so that the critical length for those
frames is given by �d

f = ��2−h+�� /h�+1 and the difference of
energy between the smallest supercritical frame and d is
equal to �d

f =16�1− �h−�� /2�2 /h.
A path from d to c can be constructed with a sequence of

chessboard-minus droplets. By using �5� we get that the dif-
ference of energy between two chessboard-minus droplets
with side lengths, respectively, given by � ,m�2 and � ,m
+1 is equal to 4−2�h−���. It then follows that the energy of
a chessboard-minus droplet is increased by adding an �-long
slice if and only if �� �2 / �h−���+1=�d

c . The length �d
c is the

critical length for the chessboard-minus droplets; the energy
difference of energy between the smallest supercritical
chessboard-minus droplet and d is equal to �d

c =8 / �h−��.
Note that �d

f ��d
u for h ,� small. Moreover, let a=h /� and

remark that, provided the magnetic field h is chosen small
enough as a function of a, �d

c ��d
f for a�2 and �d

c ��d
f for

1�a�2. Hence, for a�2 we obtain Vd=�d
c , that is the

chain escapes from d and reaches the state c in a time that
can be estimated as in �7� with �=�d

c . Starting from c the
chain will reach u by overcoming the energy barrier Vc

=�c
u�Vd. Note that Vc=Vd in the limiting case �=0, hence

both c and d are metastable states �results in �16� are recov-
ered�. For 1�a�2, Vd=�d

f , that is the chain escapes from d
and reaches the state u via a sequence of increasing frames in
a time estimated as in �7� with �=�d

f .
Case h���1. By paying the smallest energy cost any

local minimum can be transformed in a configuration with
the pluses forming well-separated rectangles �see �18��;
hence, the most relevant local minima are the plus rectangu-
lar droplets. As noted above, for this choice of the param-
eters the system cannot be trapped in chessboard-minus
droplets. Thus, the energy barrier Vd is given by the energy
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�d
u of the smallest supercritical plus droplet. As before, we

also have Vc=�c
u. Since Vc�Vd, we have that d is the unique

metastable state, the communication energy is �=�d
u, the

tunneling time is exp�	�d
u� in the sense of �7�, and the zero

temperature limit transition from the metastable state d to the
stable state u is achieved via the nucleation of a plus-minus
square droplet with side length �d

u. For �=1 the results
proven in �17� are recovered.

The metastability scenario depends on the ratio between
the magnetic field and the self-interaction. For �=0 the two
states d and c are both metastable. For a�2 and h small, c is
crucial, although not metastable, since it is visited during the
transition from the metastable state d to the stable state u.
For 2�a�1 and h small, the chessboard configuration plays
no role at all and the exit from the metastable d state is
achieved via the direct formation of the plus phase via a
sequence of increasing plus-minus droplets. The scenario is
very similar to the one proven in Ref. �12� for the Blume-
Capel model with Glauber �serial� dynamics; the role of the
chemical potential � is played here by the self-interaction
�. This behavior has been tested at finite temperature
via a Monte Carlo simulation �20�. We have considered
L=1000, h=0.2, and run the chain for �� ,	�
= �0.025,0.7� , �0.15,0.55� , �0,4 ,0.5�. By measuring the stag-
gered and the usual magnetization, we point out that the
system visits c before reaching u only in the run �=0.025
and 	=0.7 �see Fig. 1�, which is the only run with a�2.
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FIG. 1. The time unit is the time step of the chain. Solid lines
�from the left-hand side to the right-hand side� represent the mag-
netization of the runs �� ,	�= �0.15,0.55� , �0.4,0.5� , �0,025,0.7�.
Dashed lines represent the absolute value of the staggered magne-
tization; the non-null curve is found for �� ,	�= �0.025,0.7�.
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